3.19.75 \(\int \frac {(1-2 x)^{3/2} (3+5 x)^2}{2+3 x} \, dx\) [1875]

Optimal. Leaf size=82 \[ \frac {14}{81} \sqrt {1-2 x}+\frac {2}{81} (1-2 x)^{3/2}-\frac {31}{18} (1-2 x)^{5/2}+\frac {25}{42} (1-2 x)^{7/2}-\frac {14}{81} \sqrt {\frac {7}{3}} \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ) \]

[Out]

2/81*(1-2*x)^(3/2)-31/18*(1-2*x)^(5/2)+25/42*(1-2*x)^(7/2)-14/243*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)
+14/81*(1-2*x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {90, 52, 65, 212} \begin {gather*} \frac {25}{42} (1-2 x)^{7/2}-\frac {31}{18} (1-2 x)^{5/2}+\frac {2}{81} (1-2 x)^{3/2}+\frac {14}{81} \sqrt {1-2 x}-\frac {14}{81} \sqrt {\frac {7}{3}} \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((1 - 2*x)^(3/2)*(3 + 5*x)^2)/(2 + 3*x),x]

[Out]

(14*Sqrt[1 - 2*x])/81 + (2*(1 - 2*x)^(3/2))/81 - (31*(1 - 2*x)^(5/2))/18 + (25*(1 - 2*x)^(7/2))/42 - (14*Sqrt[
7/3]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/81

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {(1-2 x)^{3/2} (3+5 x)^2}{2+3 x} \, dx &=\int \left (\frac {155}{18} (1-2 x)^{3/2}-\frac {25}{6} (1-2 x)^{5/2}+\frac {(1-2 x)^{3/2}}{9 (2+3 x)}\right ) \, dx\\ &=-\frac {31}{18} (1-2 x)^{5/2}+\frac {25}{42} (1-2 x)^{7/2}+\frac {1}{9} \int \frac {(1-2 x)^{3/2}}{2+3 x} \, dx\\ &=\frac {2}{81} (1-2 x)^{3/2}-\frac {31}{18} (1-2 x)^{5/2}+\frac {25}{42} (1-2 x)^{7/2}+\frac {7}{27} \int \frac {\sqrt {1-2 x}}{2+3 x} \, dx\\ &=\frac {14}{81} \sqrt {1-2 x}+\frac {2}{81} (1-2 x)^{3/2}-\frac {31}{18} (1-2 x)^{5/2}+\frac {25}{42} (1-2 x)^{7/2}+\frac {49}{81} \int \frac {1}{\sqrt {1-2 x} (2+3 x)} \, dx\\ &=\frac {14}{81} \sqrt {1-2 x}+\frac {2}{81} (1-2 x)^{3/2}-\frac {31}{18} (1-2 x)^{5/2}+\frac {25}{42} (1-2 x)^{7/2}-\frac {49}{81} \text {Subst}\left (\int \frac {1}{\frac {7}{2}-\frac {3 x^2}{2}} \, dx,x,\sqrt {1-2 x}\right )\\ &=\frac {14}{81} \sqrt {1-2 x}+\frac {2}{81} (1-2 x)^{3/2}-\frac {31}{18} (1-2 x)^{5/2}+\frac {25}{42} (1-2 x)^{7/2}-\frac {14}{81} \sqrt {\frac {7}{3}} \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 56, normalized size = 0.68 \begin {gather*} \frac {3 \sqrt {1-2 x} \left (-527+1853 x+144 x^2-2700 x^3\right )-98 \sqrt {21} \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )}{1701} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((1 - 2*x)^(3/2)*(3 + 5*x)^2)/(2 + 3*x),x]

[Out]

(3*Sqrt[1 - 2*x]*(-527 + 1853*x + 144*x^2 - 2700*x^3) - 98*Sqrt[21]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/1701

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 56, normalized size = 0.68

method result size
risch \(\frac {\left (2700 x^{3}-144 x^{2}-1853 x +527\right ) \left (-1+2 x \right )}{567 \sqrt {1-2 x}}-\frac {14 \arctanh \left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{243}\) \(49\)
derivativedivides \(\frac {2 \left (1-2 x \right )^{\frac {3}{2}}}{81}-\frac {31 \left (1-2 x \right )^{\frac {5}{2}}}{18}+\frac {25 \left (1-2 x \right )^{\frac {7}{2}}}{42}-\frac {14 \arctanh \left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{243}+\frac {14 \sqrt {1-2 x}}{81}\) \(56\)
default \(\frac {2 \left (1-2 x \right )^{\frac {3}{2}}}{81}-\frac {31 \left (1-2 x \right )^{\frac {5}{2}}}{18}+\frac {25 \left (1-2 x \right )^{\frac {7}{2}}}{42}-\frac {14 \arctanh \left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{243}+\frac {14 \sqrt {1-2 x}}{81}\) \(56\)
trager \(\left (-\frac {100}{21} x^{3}+\frac {16}{63} x^{2}+\frac {1853}{567} x -\frac {527}{567}\right ) \sqrt {1-2 x}+\frac {7 \RootOf \left (\textit {\_Z}^{2}-21\right ) \ln \left (\frac {3 \RootOf \left (\textit {\_Z}^{2}-21\right ) x -5 \RootOf \left (\textit {\_Z}^{2}-21\right )+21 \sqrt {1-2 x}}{2+3 x}\right )}{243}\) \(69\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(3/2)*(3+5*x)^2/(2+3*x),x,method=_RETURNVERBOSE)

[Out]

2/81*(1-2*x)^(3/2)-31/18*(1-2*x)^(5/2)+25/42*(1-2*x)^(7/2)-14/243*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)
+14/81*(1-2*x)^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.54, size = 73, normalized size = 0.89 \begin {gather*} \frac {25}{42} \, {\left (-2 \, x + 1\right )}^{\frac {7}{2}} - \frac {31}{18} \, {\left (-2 \, x + 1\right )}^{\frac {5}{2}} + \frac {2}{81} \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} + \frac {7}{243} \, \sqrt {21} \log \left (-\frac {\sqrt {21} - 3 \, \sqrt {-2 \, x + 1}}{\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}}\right ) + \frac {14}{81} \, \sqrt {-2 \, x + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^2/(2+3*x),x, algorithm="maxima")

[Out]

25/42*(-2*x + 1)^(7/2) - 31/18*(-2*x + 1)^(5/2) + 2/81*(-2*x + 1)^(3/2) + 7/243*sqrt(21)*log(-(sqrt(21) - 3*sq
rt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 14/81*sqrt(-2*x + 1)

________________________________________________________________________________________

Fricas [A]
time = 0.78, size = 61, normalized size = 0.74 \begin {gather*} \frac {7}{243} \, \sqrt {7} \sqrt {3} \log \left (\frac {\sqrt {7} \sqrt {3} \sqrt {-2 \, x + 1} + 3 \, x - 5}{3 \, x + 2}\right ) - \frac {1}{567} \, {\left (2700 \, x^{3} - 144 \, x^{2} - 1853 \, x + 527\right )} \sqrt {-2 \, x + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^2/(2+3*x),x, algorithm="fricas")

[Out]

7/243*sqrt(7)*sqrt(3)*log((sqrt(7)*sqrt(3)*sqrt(-2*x + 1) + 3*x - 5)/(3*x + 2)) - 1/567*(2700*x^3 - 144*x^2 -
1853*x + 527)*sqrt(-2*x + 1)

________________________________________________________________________________________

Sympy [A]
time = 18.97, size = 107, normalized size = 1.30 \begin {gather*} \frac {25 \left (1 - 2 x\right )^{\frac {7}{2}}}{42} - \frac {31 \left (1 - 2 x\right )^{\frac {5}{2}}}{18} + \frac {2 \left (1 - 2 x\right )^{\frac {3}{2}}}{81} + \frac {14 \sqrt {1 - 2 x}}{81} + \frac {98 \left (\begin {cases} - \frac {\sqrt {21} \operatorname {acoth}{\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} \right )}}{21} & \text {for}\: x < - \frac {2}{3} \\- \frac {\sqrt {21} \operatorname {atanh}{\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} \right )}}{21} & \text {for}\: x > - \frac {2}{3} \end {cases}\right )}{81} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(3/2)*(3+5*x)**2/(2+3*x),x)

[Out]

25*(1 - 2*x)**(7/2)/42 - 31*(1 - 2*x)**(5/2)/18 + 2*(1 - 2*x)**(3/2)/81 + 14*sqrt(1 - 2*x)/81 + 98*Piecewise((
-sqrt(21)*acoth(sqrt(21)*sqrt(1 - 2*x)/7)/21, x < -2/3), (-sqrt(21)*atanh(sqrt(21)*sqrt(1 - 2*x)/7)/21, x > -2
/3))/81

________________________________________________________________________________________

Giac [A]
time = 1.61, size = 90, normalized size = 1.10 \begin {gather*} -\frac {25}{42} \, {\left (2 \, x - 1\right )}^{3} \sqrt {-2 \, x + 1} - \frac {31}{18} \, {\left (2 \, x - 1\right )}^{2} \sqrt {-2 \, x + 1} + \frac {2}{81} \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} + \frac {7}{243} \, \sqrt {21} \log \left (\frac {{\left | -2 \, \sqrt {21} + 6 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}\right )}}\right ) + \frac {14}{81} \, \sqrt {-2 \, x + 1} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(3+5*x)^2/(2+3*x),x, algorithm="giac")

[Out]

-25/42*(2*x - 1)^3*sqrt(-2*x + 1) - 31/18*(2*x - 1)^2*sqrt(-2*x + 1) + 2/81*(-2*x + 1)^(3/2) + 7/243*sqrt(21)*
log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 14/81*sqrt(-2*x + 1)

________________________________________________________________________________________

Mupad [B]
time = 0.05, size = 57, normalized size = 0.70 \begin {gather*} \frac {14\,\sqrt {1-2\,x}}{81}+\frac {2\,{\left (1-2\,x\right )}^{3/2}}{81}-\frac {31\,{\left (1-2\,x\right )}^{5/2}}{18}+\frac {25\,{\left (1-2\,x\right )}^{7/2}}{42}+\frac {\sqrt {21}\,\mathrm {atan}\left (\frac {\sqrt {21}\,\sqrt {1-2\,x}\,1{}\mathrm {i}}{7}\right )\,14{}\mathrm {i}}{243} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1 - 2*x)^(3/2)*(5*x + 3)^2)/(3*x + 2),x)

[Out]

(21^(1/2)*atan((21^(1/2)*(1 - 2*x)^(1/2)*1i)/7)*14i)/243 + (14*(1 - 2*x)^(1/2))/81 + (2*(1 - 2*x)^(3/2))/81 -
(31*(1 - 2*x)^(5/2))/18 + (25*(1 - 2*x)^(7/2))/42

________________________________________________________________________________________